\(\int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx\) [335]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 67 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\frac {8 \sec ^5(e+f x) (c-c \sin (e+f x))^{5/2}}{405 c f}-\frac {2 \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{81 c^2 f} \]

[Out]

8/15*sec(f*x+e)^5*(c-c*sin(f*x+e))^(5/2)/a^3/c/f-2/3*sec(f*x+e)^5*(c-c*sin(f*x+e))^(7/2)/a^3/c^2/f

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2815, 2753, 2752} \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\frac {8 \sec ^5(e+f x) (c-c \sin (e+f x))^{5/2}}{15 a^3 c f}-\frac {2 \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{3 a^3 c^2 f} \]

[In]

Int[(c - c*Sin[e + f*x])^(3/2)/(a + a*Sin[e + f*x])^3,x]

[Out]

(8*Sec[e + f*x]^5*(c - c*Sin[e + f*x])^(5/2))/(15*a^3*c*f) - (2*Sec[e + f*x]^5*(c - c*Sin[e + f*x])^(7/2))/(3*
a^3*c^2*f)

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2753

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^6(e+f x) (c-c \sin (e+f x))^{9/2} \, dx}{a^3 c^3} \\ & = -\frac {2 \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{3 a^3 c^2 f}-\frac {4 \int \sec ^6(e+f x) (c-c \sin (e+f x))^{7/2} \, dx}{3 a^3 c^2} \\ & = \frac {8 \sec ^5(e+f x) (c-c \sin (e+f x))^{5/2}}{15 a^3 c f}-\frac {2 \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{3 a^3 c^2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.24 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.33 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\frac {2 c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+5 \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{405 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^3} \]

[In]

Integrate[(c - c*Sin[e + f*x])^(3/2)/(3 + 3*Sin[e + f*x])^3,x]

[Out]

(2*c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + 5*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(405*f*(Cos[(e + f*
x)/2] - Sin[(e + f*x)/2])*(1 + Sin[e + f*x])^3)

Maple [A] (verified)

Time = 0.76 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.91

method result size
default \(-\frac {2 c^{2} \left (\sin \left (f x +e \right )-1\right ) \left (5 \sin \left (f x +e \right )-1\right )}{15 a^{3} \left (\sin \left (f x +e \right )+1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(61\)

[In]

int((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

-2/15*c^2/a^3*(sin(f*x+e)-1)/(sin(f*x+e)+1)^2*(5*sin(f*x+e)-1)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.10 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=-\frac {2 \, {\left (5 \, c \sin \left (f x + e\right ) - c\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{15 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} - 2 \, a^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a^{3} f \cos \left (f x + e\right )\right )}} \]

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

-2/15*(5*c*sin(f*x + e) - c)*sqrt(-c*sin(f*x + e) + c)/(a^3*f*cos(f*x + e)^3 - 2*a^3*f*cos(f*x + e)*sin(f*x +
e) - 2*a^3*f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate((c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 331 vs. \(2 (65) = 130\).

Time = 0.29 (sec) , antiderivative size = 331, normalized size of antiderivative = 4.94 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\frac {2 \, {\left (c^{\frac {3}{2}} - \frac {10 \, c^{\frac {3}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {4 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {30 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {6 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} - \frac {30 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {4 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} - \frac {10 \, c^{\frac {3}{2}} \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} + \frac {c^{\frac {3}{2}} \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}}\right )}}{15 \, {\left (a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )} f {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {3}{2}}} \]

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

2/15*(c^(3/2) - 10*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 4*c^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 3
0*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 6*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 30*c^(3/2)*sin
(f*x + e)^5/(cos(f*x + e) + 1)^5 + 4*c^(3/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 - 10*c^(3/2)*sin(f*x + e)^7/(
cos(f*x + e) + 1)^7 + c^(3/2)*sin(f*x + e)^8/(cos(f*x + e) + 1)^8)/((a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) +
1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x +
 e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)*f*(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 +
 1)^(3/2))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 207 vs. \(2 (65) = 130\).

Time = 0.32 (sec) , antiderivative size = 207, normalized size of antiderivative = 3.09 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=-\frac {2 \, \sqrt {2} {\left (c \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {5 \, c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {5 \, c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {15 \, c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )} \sqrt {c}}{15 \, a^{3} f {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{5}} \]

[In]

integrate((c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

-2/15*sqrt(2)*(c*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 5*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/4*p
i + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 5*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(si
n(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 + 15*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) -
1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)*sqrt(c)/(a^3*f*((cos(-1/4*pi
+ 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^5)

Mupad [B] (verification not implemented)

Time = 10.37 (sec) , antiderivative size = 355, normalized size of antiderivative = 5.30 \[ \int \frac {(c-c \sin (e+f x))^{3/2}}{(3+3 \sin (e+f x))^3} \, dx=\frac {c\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,8{}\mathrm {i}}{3\,a^3\,f\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^2}+\frac {136\,c\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}}{15\,a^3\,f\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^3}-\frac {c\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,64{}\mathrm {i}}{5\,a^3\,f\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^4}-\frac {32\,c\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}}{5\,a^3\,f\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^5} \]

[In]

int((c - c*sin(e + f*x))^(3/2)/(a + a*sin(e + f*x))^3,x)

[Out]

(c*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*8i)/(3*a^3*f*(ex
p(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^2) + (136*c*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*
1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2))/(15*a^3*f*(exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^3) -
(c*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*64i)/(5*a^3*f*(e
xp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^4) - (32*c*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*
1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2))/(5*a^3*f*(exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^5)